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Unstable particles and the Poincare semigroup in quantum 
field theory 
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Instituut voor Theoretische Fysica, Universiteit Leuven, 8-3030 Leuven, Belgium 

Received 8 July 1985 

Abstract. We propose to describe the dynamics of unstable particles in relativistic quantum 
field theory in terms of semigroups of transformations of the observables. This leads, in 
contrast to the usual Hilbert space level treatment, to a complete and consistent description 
of the irreversible dynamics of decay processes. The scheme is explicitly worked out for 
the massive scalar quantum field and the evolution of the particle density and its higher 
moments is computed. 

1. Introduction 

Theories of unstable particles still face many conceptual difficulties. First of all, unstable 
particles represent an irreversible process (decay process) which as with each irrevers- 
ible phenomenon asks for a microscopic explanation. In this paper we are not focusing 
on the derivation of the phenomenon of irreversibility hidden in the theory of unstable 
particles, but we accept the irreversibility as such and try to describe it in a way as 
has been suggested by many authors over the last fifteen years [l-41. The essential 
idea is that the state of an unstable particle cannot move backwards in time. The 
transformations which can be applied can at best be the representatives of a semigroup 
constituted by the future cone of Minkowski space. 

Although this idea is widely known, the representations of the future cone which 
one finds in the literature are only realised on the one-particle space and are not 
extended to the many-particle states, hence excluding essentially the field theoretic 
character. 

Our contribution now precisely consists of the construction of representations of 
the future cone by semigroups taking into account the many-particle structure of 
quantum field theory. In particular we use the theory of completely positive unity 
preserving maps recently introduced in statistical mechanics of irreversible systems 
(for reviews of the theory see [5-71). Such mappings induce a transformation of the 
states of the system into themselves and therefore allow a probabilistic interpretation 
of the theory. In general pure states are mapped into mixed states; this is a characteristic 
property for irreversibility, which therefore cannot be realised on the level of Hilbert 
space transformations. We work out the details for the massive scalar field. On the 
one-particle level one recovers the known results, but our theory enables us, for example, 
to calculate also the moments of the particle number operator in an n-particle state. 

t On leave of absence from Institute of Theoretical Physics and Astrophysics, Gdansk University, Poland. 
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Hence having done this we obtain a genuine quar?tum field theory of unstable 
particles which contains the essential ingredients of irreversibility, PoincarC covariance 
and statistical independence of decay processes and which is compatible with the 
probabilistic interpretation of quantum theories. 

2. Quantum irreversible dynamics and relativistic unstable particles 

First we describe non-relativistic quantum irreversible dynamics in a theory of open 
systems [5-71. 

Consider a system with algebra of observables W( X), all bounded operators on a 
Hilbert space X, As states of the system we consider the expectation functionals 
defined by means of density matrices p on X: 

p ( A )  = Tr PA, A €  W ( X ) .  
Here we use the same notation for the state and for the corresponding density matrix. 

In the Heisenbcrg picture the irreversible evolution from time t = 0 up to time t is 
given by the dynamical map r,: 

r , : A E  B(X)+r,(A)E S ( X )  (1) 

satisfying 
(1) Tf is a linear map of W ( X )  
( 2 )  r,( 1) = 1 where 1 stands for the unit operator in W ( X )  
(3 )  T I  is a completely positive map, i.e. for all n E N, the map T, 0 1 of W( X) 0 M,, 

Such a dynamical map can be de:cribed in the Schrodinger picture (mapping states 
( M ,  the set of n x n matrices) is a positive map. 

into states) by the transposed map 

In general such dynamical maps f ,  map pure states into mixed states and hence 
describe an irreversible evolution containing some stochasticity, due to the environment. 

In general the time dependence may be very complicated. However here we restrict 
ourselves to the Markovian case: 

of r, defined as follows: 

f w  = rf. 

To= 1, rllrfl = rl1+t2, t , ,  t 2 E  R+ (2) 
i.e. {r,l t E R+} is a representation of the semigroup R+ into a one-parameter semigroup 
of unity preserving completely positive maps of W ( 2 ) .  

Under the uniform continuity condition of the map r : t E Et+-, I', one has that there 
exists a generator L such that 

rl = exp tL 
where L is of the Lindblad type [8], i.e. for all A E  a(%): 

where H, v k  E W( 2) and H *  = H. 
Here we formulated the notion of a dynamical semigroup acting on S ( X ) .  It is 

clear that this can be generalised to the more general scheme of a physical system 
given by a C*-algebra of observables d and its corresponding set of states (the positive 
linear functionals of d which are normalised up to one). Moreover one may assume 
weaker continuity conditions. 
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In many cases one is also able to construct a generator for these semigroups. They 
are formally still of the type (3), but the operators H and Vk are generally unbounded 
and instead of a discrete sum one might have integrals. 

Physically, irreversibility should be due to an interaction of the system with its 
environment. Indeed for a large class of dynamical semigroups one can construct a 
reversible (unitary) evolution for a larger system. The semigroup can then be recovered 
as a reduced dynamics (dilation construction) or as a Markovian limit (weak coupling 
or singular coupling limits). 

Our aim is now to generalise the above scheme to relativistic theories. These are 
theories which are covariant for the PoincarC group 9 consisting of all pairs (a, L )  
with a E R4 and L E  2, the proper orthochronous Lorentz group. The PoincarC group 
acts on the Minkowski space R4 equipped with the metric 

( x ,  Y )  = XoYo-2. Y 

( a , L ) x = L x + a .  

The product rule in 9 is then 

as a transformation group in the following way: 

(a, L)(  b, M )  = ( a  + Lb, L M )  

for (a,  L ) ,  ( b ,  M )  E 9. 
In order to describe a non-relativistic irreversible evolution one needs a representa- 

tion of the time-parameter semigroup Rf into the dynamical semigroups of the system; 
Rf represents the future part of the absolute time variable. 

In relativistic theories this is replaced by the future cone 

9 = ( a  E ~ 4 1 u *  = (a,  a )  3 0, a, 3 O}. (4) 

We remark that 9 is an additive semigroup, a sub-semigroup of R4. 
Here also one describes relativistic systems by means of the so-called algebraic 

approach [9]. A dynamical system has as fundamental ingredients the algebra of 
observables given by a C*-algebra d with unit, the physical states of the system given 
by the positive linear normalised functionals o of d and the kinematics given by a 
representation 7~ of the Poincari group into the *-automorphisms of d. 

Now we propose to describe the dynamics of unstable particles by a Poincari 
covariant representation r of the future cone 9 into a semigroup of linear completely 
positive unity preserving maps of SP, i.e. for all b E 9, r b  is a linear completely positive 
unity preserving map of SP, satisfying the semigroup property 

rorb = r.+b, a, bE 9 ( 5 )  

n( a, L ) r b r (  a, L)-' = r L b  ( 6 )  

and the covariance 

for all (a,  L )  E 9 and b E 9. 

non-vanishing mass. 

relativistic semigroups. 

Afterwards one recovers any direction by applying the Poincari group. 

In the next section we implement this scheme for a scalar field of particles with a 

Before closing this section we want to comment on the microscopic origin of these 

One may start by choosing a particular spacetime direction ( t , O ) ,  t > O  in 9. 
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Then one should obtain a dynamical semigroup Tr  = r(r,O) as a Markovian approxi- 
mation for the reduced dynamics of an open system (the unstable particles) interacting 
with a reservoir (decay products). Technically this is not an easy feat. Because of the 
non-existence of relativistic dynamics, one introduces cutoffs and smooth form factors. 
Then one proceeds as in the non-relativistic case with a weak coupling limit [lo]. 
Afterwards one may formally remove the cutoffs to obtain a covariant dynamical 
semigroup. 

3. Scalar boson field 

Consider the Hilbert space H = L2(R4, dp,) of square integrable complex functions 
on R4 with the usual Lorentz invariant measure dp, = S ( p 2 -  m 2 ) e ( p o )  dp on the 
hyperboloid S ,  of positive energy with mass m. This is the relativistic test-function 
space of the boson field described by the CCR-algebra & ( U ) .  The latter is generated 
by the Weyl operators W( 4 ) ,  4 E H, satisfying the product rule: 

W ( 4 )  W ( + )  = exp[ - M 4 ,  +)I W(4 + $1 
where CT(+,+) = Im(4, +) and W ( 4 ) *  = W(-4) .  One might think of the Weyl 
operators as explicitly given by 

where a*(C#J), a ( $ )  are the usual creation and annihilation operators on Fock space. 
By the construction of H, as the measure dp, is Lorentz invariant, we have a 

natural unitary representation U of the PoincarC group 9 on the test-function space H 

( U ( a ,  L M ) ( p )  = exp(iap)@(L-'p). ( 7 )  

It is easily checked that this representation U induces a representation T of 9 into 
the *-automorphisms of & ( U ) :  

d a ,  L )  W ( 4 )  = W( L)4), (a, L )  E 9. (8) 
This is the representation T of the kinematics mentioned above. We remark that the 
maps T (  a, L )  map Weyl operators into Weyl operators. Such automorphisms are called 
quasi-free. 

Now we are looking for a representation r of the semigroup 4 also into quasi-free 
maps. Quasi-free completely positive unity preserving maps of the CCR-algebra .d( U )  

into itself have been extensively studied before [ 111 and shown to be of the form 

W ( 4 ) +  W ( A 4 ) f ( 4 )  ( 9 )  

W( 4 )  +f( 4) 

where A is a linear operator on H and where f is any complex function such that 

is a quasi-free state [12] on the modified CCR-algebra &(vA)  where ~ ~ ( 4 ,  $) = 

4 4 ,  +) - 44,  A$), (4, IL E H). 
Therefore we consider the following representation of the semigroup 

b+rb  b E 9  
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where 

r b w ( 4 )  = w ( T b # I )  exp( idx ,  4)) exp( - $ ( d I X b d ) )  

where Tb, x b  are bounded linear operators on H and X b  is a vector in H such that 
(a) ( # I l x b # I ) s o v # I  E H 
(b)  / (+Th(4r  $ ) I 2 <  ( d l x b # I ) ( $ l x b $ ) ;  see [ I2]  
(c) the maps 6 E 9- T, X b  and x b  are weakly continuous. 
Our aim is now to obtain the explicit forms of X b ,  Tb and x b  using the condition 

that r b  is a PoincarC covariant semigroup in the sense of [5,6]. 

Theorem. With the above notation { r b ( b  E s} is a Poincari covariant semigroup of 
unity preserving completely positive mappings iff 

( i )  3 z  E C, Im z 2 0, such that 

( T b 4 ) ( p )  = exp( izbp)4(p) ,  #IEH 

(ii) X b  = 0 
(iii) 3~ 3 1 such that 

( x b 4 ) ( p )  = ~ [ 1  -exp(-2 Im zbp)l#I(p), #I E H. 

Pro05 By inspection the conditions (i), (ii) and  (iii) imply that {rb/b E 9) is a PoincarC 
covariant semigroup. We now prove the converse statement. From the PoincarC 
covariance it follows immediately that 

U ( U ,  L ) T b U ( U ,  L) - '=  T L b  

U (  a, L ) x b  = X L b  

U (  a, L ) x b u (  0, L)-' = X L b .  

Putting L = 1 we find that T b  and x b  are invariant with respect t o  the translations and 
therefore there exist bounded functions T b (  p )  and x b (  p )  on the hyperboloid S ,  such 
that 

The vector X b  E H is translation invariant: 

X b  = 0. 

Now putting a = 0 one concludes the Lorentz covariance 

T b ( L - ' p )  = T L b ( P )  x b  ( L-'p ) = X L b  ( p ) .  
On the other hand as r b  is a semigroup we have 

T b ( p )  T b , ( p )  = T b + b ' ( P ) ,  

x b + b ' ( p )  = ~ T b ' ( p ) 1 2 x b ( p ) - t x b ' ( p ) ~  

T d P )  = 1 

and 

X d P )  = 0. 
From this and  the continuity 6 + Tb it follows that there exists a vector field y (  p )  such 
that 

T b ( p )  = exp W p ) .  
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From the Lorentz covariance and the fact that Tb is a bounded linear operator, there 
exists z E @, Im z 3 0, such that 

T b (  p )  = exp izbp. 

For the operator x b  the semigroup condition allows us to write 

xb+  b’( p ) = I Tb’( p ( p + xb’(  p = I Tb ( p ) I 2xb’(  p ) + x b  ( P * 

Therefore there exists a function ~ ( p )  independent of b such that 

and using the Lorentz covariance one concludes that K has to be a constant. Finally 
we should satisfy the positivity conditions (a) and (b) in the definition of the quasi-free 
completely positive map r b  which imply K 2 1 .  

Next we give a few comments on the theorem and its possible generalisations. The 
contraction semigroup T b  acting on H describes the unstable particle on the level of 
a one-particle space. Such a description on the Hilbert space level has frequently been 
used in the literature [l-41. The main point of our theorem is, however, that the 
description of unstable particles should be done on the quantum field level rather than 
on the level of a single-particle Hilbert space. Clearly y = 2 Im z determines the decay 
rate of the unstable particles and in the following we choose Re z = 1 in order that r b  

coincides with T( b, 1 )  in the limiting case y = 0. 
By inspection wo( W (  4)) = exp( - : K  I/ 4 1 1 2 )  is the only invariant regular state under 

{ r b l b E  9) and all regular States evolve, when bo+CO, under r b  to woe The state wo is 
pure iff K = 1 [12] and in this case it is the usual Fock vacuum wF. If K > 1 we have 
a mixed state which describes a background density of particles. From now on we 
will restrict ourselves to the Fock case. 

Let a ( 4 )  and a * ( 4 )  denote the usual boson field operators on Fock space satisfying 

[ a ( + ) ,  a(+)] = o  and [ a ( + ) ,  a * (+ ) ]  = (4 I +)* 
The action of r b  on a Fock space operator can then formally be written as 

r b  = eXp bL 

where 

L(x) = 1 dlL*(p)p{i[a*(p)a(p), XI+’ 2r(a*(p)[x, 4 P ) l  + [ a * ( p ) ,  x14p) ) ) .  

So L has the formal structure of a Lindblad generator (3) .  One can also easily 
compute the action of r b  on any monomial in the field operators and obtain 

r b ( a ” ( 4 l ) .  . . a#(+,))  

where the summation is on all partitions of ( 1 , .  . . , n} into subsets { i l , .  . . , i k }  

{ z k + l , .  . . , in} such that il S . .  . s  ik and i k + l  S . .  . s  in and where a” means either a 
or a*. 

The construction of the above equation can be generalised to the case where the 
CCR-algebra is built on a dense subspace of H such as the Schwartz space. In principle 
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this allows generalisation of the function 4 + a( ( L b l 4 )  to a distribution and of x b  to 
an unbounded operator. However due to the PoincarC covariance and the non- 
vanishing mass of the particles the PoincarC covariant semigroups still coincide with 
the ones obtained in the theorem. 

For the mass m scalar field only the one-dimensional representations of the Lorentz 
group enter in the construction. For spin non-zero fields with possible internal degrees 
of freedom higher-dimensional representations of the restricted Lorentz group should 
be taken into account, e.g. the semigroup rb should be suitably generalised in the 
sense that the semigroup { Tblb E P} is a non-trivial matrix representation of the 
semigroup 9. 

In this work we have focused on Bose fields but the same programme can be carried 
out for Fermi fields. In this case one has to take into account the above remark and 
use the following form of the semigroup [13,14] 

4. Applications 

4.1. Decay of moving particles 

In the problem of the decay of moving particles one is measuring the density of a 
beam of particles which move with mean velocity 6 with respect to the laboratory 
frame, i.e. we compare the density of particles n ( p ;  0) with the energy momentum 
p = ( po,  p) at the origin (0,O) with the density n( p ,  b )  at b = ( t ,  6 t )  where 6 = p / p o .  

We remark that 

n ( p ;  0) = w ( a * ( f J ) a ( p ) )  

where o is a state localised in the neighbourhood of the point (0,O) of the coordinate 
system. 

Then 

n(p;  b ,  = (‘J(rb(a*(p)a(p)))* 

By (10) one gets 

n ( p ;  b )  = n ( p ;  0) exp(-ybp) 

= n ( p ;  0) e x p [ - y ( r ~ ~ - ~ ~ t / p ~ ) l  

= n ( p ;  0) exp[-y(m2/po)tI. 

Therefore the decay time of the moving particles is given by 

7 = Pol  Ym = (Po/ m 170 ( 1 1 )  

where T~ = 11 ym is the decay time in the rest frame of the particles. As predicted by 
dilatation arguments the decay time increases with the energy. 
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This result is well known and can be obtained by those representations of the 
Poincark semigroup 9 on the level of the one-particle space [ 1,4]. 

The next application is one which cannot be obtained by representations restricted 
to the one-particle level. It is a genuine consequence of our representations in a second 
quantised theory. 

4.2. Particle number fluctuations 

We compute the evolution of the number of particles for an initial n-particle state 
under the stochastic semigroup evolution which we found above. In particular let 4, 
be the n-particle state 

where OF  is the Fock vacuum, is any test function and 

= 5 f ( p ) a * ( p ) a ( p )  dp,(p) 

the number operator weighted with the function J: 

state $, after applying rb. 
Now we compute the characteristic function of the number operator N(1)  in the 

Using the following formula 

= exp isN(f)  

and ( lo) ,  one obtains 

r b ( e x p  isN(1))  

= exp N(gs,b) 

where gs,b(p) =ln[l+exp(-ybp)(e"-l)]. 

S ( .  - p ) ;  then 
Suppose now that we take for 141' a &function convergent sequence tending to 

($m rb(exp i s N ( l ) ) $ n )  

tends to 

exp{n In[ l+exp( -ybp) (e i s -1 ) ] }=[77+( i -~ )  eis ln  

where 77 = 1 -exp(-ybp) is the probability of decay. 
Our remarks on the statistical independence of the decay processes described by 

the binomial distribution of order n for an n-particle state. 
Now we consider the distribution of the decay products 

(4m r b  (exp is ( N (  1) - n ) )  $n 1. 
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This becomes 

[e-"V + ( 1  - 77)]". 

If we now take y to be small then this becomes 

If one takes n y b p S O ( 1 )  and n large enough then one recovers the characteristic 
function of a Poisson distribution. 
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